MSSM Radiative Corrections

to

Neutrino-nucleon Deep-inelastic Scattering

Oliver Brein

Institute of Particle Physics Phenomenology, University of Durham

in collaboration with Wolfgang Hollik and Benjamin Koch

e-mail: Oliver.Brein@durham.ac.uk

outline :

- Introduction
 - deep inelastic νN scattering at NuTeV
 - possible explanations
- MSSM radiative corrections to $u_{\mu}N$ DIS
 - definition of $\delta R^{\nu,\bar{\nu}} = R^{\nu,\bar{\nu}}_{MSSM} R^{\nu,\bar{\nu}}_{SM}$
 - superpartner loop corrections
 - MSSM-SM Higgs loop difference
- Results for $\delta R^{\nu}, \delta R^{\overline{\nu}}$
 - how to scan over MSSM parameters?
 - MSSM parameter scan

Introduction

– deep inelastic νN scattering at NuTeV

In the SM neutral (NC) and charged current (CC) neutrino nucleon scattering are described in LO by *t*-channel W and Z exchange.

At NuTeV ν_{μ} and $\bar{\nu}_{\mu}$ beams of a mean energy of 125 GeV were scattered off a target detector and the ratios

$$R^{\nu} = \frac{\sigma_{\rm NC}^{\nu}}{\sigma_{\rm CC}^{\nu}}, \qquad \qquad R^{\bar{\nu}} = \frac{\sigma_{\rm NC}^{\bar{\nu}}}{\sigma_{\rm CC}^{\bar{\nu}}}$$

were measured.

NuTeV measured also the weak mixing angle [NuTeV '02].

 $\sin^2 \theta_w^{\text{on-shell}} = 0.2277 \pm 0.0013 \pm 0.0009$

 \rightarrow This is about 3σ below the SM prediction !

But the measurement is indirect, using the measurements of $R^{\nu}, R^{\overline{\nu}}$ and making use of the Paschos-Wolfenstein relation

$$R^{-} = \frac{R^{\nu} - rR^{\overline{\nu}}}{1 - r} = \frac{1}{2} - \sin^{2}\theta_{w} + \cdots, \qquad r = \frac{\sigma_{CC}^{\overline{\nu}}}{\sigma_{CC}^{\nu}} \approx \frac{1}{2}$$

More precisely, ratios of counting rates

 $R_{\text{exp}}^{\nu} = \frac{\text{\# of NC-like }\nu \text{ events}}{\text{\# of CC-like }\nu \text{ events}} \approx R^{\nu}, \quad R_{\text{exp}}^{\overline{\nu}} = \frac{\text{\# of NC-like }\overline{\nu} \text{ events}}{\text{\# of CC-like }\overline{\nu} \text{ events}} \approx R^{\overline{\nu}}$ are measured.

 $R_{exp}^{\nu}, R_{exp}^{\overline{\nu}}$ can be related to $R^{\nu}, R^{\overline{\nu}}$ by a detailed MC physics simulation.

The deviation from the SM in terms of R_{exp}^{ν} , $R_{exp}^{\overline{\nu}}$ are [NuTeV '02]:

$$\Delta R^{\nu} = R_{\exp}^{\nu} - R_{\exp}^{\nu}(SM) = -0.0032 \pm 0.0013 ,$$

$$\Delta R^{\bar{\nu}} = R_{\exp}^{\bar{\nu}} - R_{\exp}^{\bar{\nu}}(SM) = -0.0016 \pm 0.0028 .$$

 $\rightarrow \Delta R^{\nu, \overline{\nu}}$: simple starting point for studying MSSM radiative corrections

– possible explanations

• statistical fluctuation, errors underestimated ?

 \rightarrow re-analyses of EW rad. corr.

[Diener, Dittmaier, Hollik '03 & '05; Arbuzov, Bardin, Kalinovskaya '03]

- relevant SM effects neglected ?
 - \rightarrow asymmetry of strange sea-quarks in the nucleon ($s \neq \overline{s}$)
 - \rightarrow isospin violation $(u_p \neq d_n)$
 - \rightarrow nuclear effects
 - \rightarrow etc. . . .
- new physics ?
 - \rightarrow modified gauge boson interactions (e.g. in extra dimensions)
 - \rightarrow non-renormalizable operators (suppressed by powers of $\Lambda_{new \ physics}^{-1}$)
 - \rightarrow leptoquarks (e.g. R parity violating SUSY)
 - \rightarrow SUSY loop effects (e.g. in MSSM)
 - \rightarrow etc. . . .

[Introduction, possible explanations]

- Although the NuTeV "anomaly" is far from being settled,
- it is interesting, if the MSSM could account for such an effect.
- Earlier Studies:
- Davidson et al. ['02]
 - rough study in terms of oblique corrections
 - (i.e. momentum transfer q = 0)
 - no Parton Distribution Functions (PDFs) used
- Kurylov, Ramsey-Musolf, Su ['04] :
 - detailed parameter dependence studied
 - momentum transfer q = 0 approximation
 - no PDFs used

results so far: MSSM not responsible (size ok, but wrong sign)

- our calculation: try to include kinematic effects [OBr, Koch, Hollik]
 - full q^2 -dependence
 - use PDFs
 - use NuTeV cuts on hadronic Energy in final state
 - use mean neutrino beam energy (125 GeV)

• MSSM radiative corrections to $\nu_{\mu}N$ DIS

- definition of
$$\delta R^{\nu,\overline{\nu}} = R^{\nu,\overline{\nu}}_{MSSM} - R^{\nu,\overline{\nu}}_{SM}$$

The difference between MSSM and SM prediction, $\delta R^n = R_{\text{MSSM}}^n - R_{\text{SM}}^n$ with $R^n = \sigma_{\text{NC}}^n / \sigma_{\text{CC}}^n (n = \nu, \bar{\nu})$, using

$$(\sigma_{\rm NC}^n)_{\rm NLO} = (\sigma_{\rm NC}^n)_{\rm LO} + \delta\sigma_{\rm NC}^n \quad (n = \nu, \bar{\nu})$$
$$(\sigma_{\rm CC}^n)_{\rm NLO} = (\sigma_{\rm CC}^n)_{\rm LO} + \delta\sigma_{\rm CC}^n \quad (n = \nu, \bar{\nu})$$

can be expanded in $\delta \sigma_{\rm NC}^n$ and $\delta \sigma_{\rm CC}^n$

$$\delta R^{n} = \left(\frac{\sigma_{\rm NC}^{n}}{\sigma_{\rm CC}^{n}}\right)_{\rm LO} \left(\frac{(\delta \sigma_{\rm NC}^{n})_{\rm MSSM} - (\delta \sigma_{\rm NC}^{n})_{\rm SM}}{(\sigma_{\rm NC}^{n})_{\rm LO}} - \frac{(\delta \sigma_{\rm CC}^{n})_{\rm MSSM} - (\delta \sigma_{\rm CC}^{n})_{\rm SM}}{(\sigma_{\rm CC}^{n})_{\rm LO}}\right)$$

 \rightarrow Only differences between MSSM and SM radiative corrections and LO cross sections appear in δR^n . Because of R parity conservation in the MSSM:

- Born cross section : SM = MSSM (very good approx.)
- real photon emission corrections : SM = MSSM (very good approx.)
- SM = MSSM for SM-like 1-loop graphs without virtual Higgs

Thus:

$$\begin{split} \delta\sigma_{\text{MSSM}} &- \delta\sigma_{\text{SM}} = \text{const.} \times \left([\text{superpartner loops}] \right. \\ &+ \left[\text{Higgs graphs MSSM} - \text{Higgs graphs SM} \right] \right). \end{split}$$

- superpartner loop corrections
- CC self energy insertions

CC vertex corrections

CC box corrections

[MSSM radiative corrections to $u_{\mu}N$ DIS, SP loop corrections]

NC self energy insertions

NC vertex corrections

NC box corrections

– MSSM-SM Higgs loop difference

The partonic processes were calculated using FeynArts/FormCalc. [Küblbeck, Böhm, Denner'90], [Eck '95], [Hahn, Perez-Victoria '99], [Hahn '01], [Hahn, Schappacher '02]

see : www.feynarts.de

• Results for $\delta R^{\nu}, \delta R^{\overline{\nu}}$

- how to scan over MSSM parameters?
- goal : find regions of parameter space, where the MSSM might explain the NuTeV anomaly.
- \rightarrow difficult, large dimensionality of MSSM parameter space
- scanning strategy : "adaptive scan" [OBr'04]: \rightarrow exploit adaptive integration by importance sampling

method: calculate an approximation to the integral

$$I = \int_{M_1^{\min}}^{M_1^{\max}} dM_1 \cdots \int_{d\tan\beta^{\min}}^{d\tan\beta^{\max}} d\tan\beta \ F(\delta R^{\nu(\bar{\nu})}(M_1,\ldots,\tan\beta), M_1,\ldots,\tan\beta)$$

with VEGAS and store the sampled parameter points.

 \rightarrow automatically, the sample points will be enriched in the regions where $F(\delta R^{\nu(\bar{\nu})}(M_1,\ldots,\tan\beta), M_1,\ldots,\tan\beta)$ is large.

some sample choices of F:

•
$$F = \begin{cases} 1 & \text{if parameters } (M_1, \dots, \tan \beta) & \text{not excluded} \\ 0 & \text{elsewhere} \end{cases}$$

 \rightarrow enrich points in allowed region

•
$$F = \begin{cases} \delta R^{\nu(\bar{\nu})}(M_1, \dots, \tan \beta) & \text{if parameters } (M_1, \dots, \tan \beta) & \text{not excluded} \\ 0 & \text{elsewhere} \end{cases}$$

 \rightarrow enrich points where $|\delta R^{\nu(\bar{\nu})}|$ is large in allowed region

•
$$F = \begin{cases} \sqrt{(\delta R^{\nu}(\ldots))^2 + (\delta R^{\overline{\nu}}(\ldots))^2} & \text{if } \delta R^{\nu} \text{ and } \delta R^{\overline{\nu}} < 0\\ 0 & \text{elsewhere} \end{cases}$$

 \rightarrow enrich points where $\delta R^{\nu}, \delta R^{\overline{\nu}} <$ 0 and $\sqrt{\ldots}$ is large

– MSSM parameter scan

restrictions taken into account:

- mass exclusion limits for Higgs bosons and superpartners
- $\Delta \rho$ -constraint on sfermion mixing

quantities varied:

M_1, M_2, M_{gluino}	:	101000 GeV	μ	:	-20002000 GeV
$M_{Sf.}$:	101000 GeV	A_b, A_t, A_τ	:	-20002000 GeV
m_{A^0}	:	101000 GeV	aneta	:	150

[Results for $\delta R^{\nu}, \delta R^{\overline{\nu}}$, MSSM parameter scan]

Scan for large values of $|\delta R^{\nu}|$ and $|\delta R^{\overline{\nu}}|$ with parameter restrictions

Scan for negative values of δR^{ν} without parameter restrictions $-\delta R^{\nu}$ $0 - 1 \cdot 10^{-5}$ $1 \cdot 10^{-5} - 5 \cdot 10^{-5}$ $5 \cdot 10^{-5} - 1 \cdot 10^{-4}$ $1 \cdot 10^{-4} - 3 \cdot 10^{-4}$ $3 \cdot 10^{-4} - 8 \cdot 10^{-4}$ $8 \cdot 10^{-4} - 1 \cdot 10^{-3}$ $> 1 \cdot 10^{-3}$

0.004 0

Summary

- The NuTeV measurement of $\sin^2 \theta_w$ is intriguing but has to be further established (especially confirmation by other experiment(s) is desirable).
- Loop effects in the MSSM are not capable of explaining the NuTeV "anomaly". (size can be right, but sign is wrong).
- If the "anomaly" was established, the MSSM would be in trouble.

Our result can be easily combined with the one-loop SM result. \rightarrow The complete MSSM one-loop prediction for νN scattering is available for future analyses.