Electroweak and Bottom Quark Contributions to Higgs + Jet Production

Oliver Brein

Physikalisches Institut, Universität Freiburg

e-mail: Oliver.Brein@physik.uni-freiburg.de

outline :

- Higgs + Jet in the Standard Model
- LO Contributions to Higgs + Jet
- Numerical Results

• Higgs + Jet in the Standard Model

• Higgs + Jet in the Standard Model

- Higgs production @ the LHC
- SM Higgs production @ LHC mainly via gluon fusion:

Detection $(m_H \approx 100 - 140 \text{GeV})$: mainly via the rare decay $H \rightarrow \gamma \gamma$.

```
[ Higgs + Jet in the SM ]
```

suggestion: study Higgs events with a high- p_T hadronic jet

LO QCD $\mathcal{O}(\alpha_S^3 \alpha)$: [van der Bij et al. '87; Baur, Glover '89]

NLO QCD $\mathcal{O}(\alpha_S^4 \alpha)$: [de Florian, Grazzini, Kunszt '99]

+ NLL soft gluon threshold resummation: [de Florian, Kulesza, Vogelsang '05]

advantages:

- * richer kinematical structure compared to inclusive Higgs production.
 - \rightarrow allows for refined cuts
 - \rightarrow better signal significance (S/\sqrt{B})
- * background predictions e.g. for $H\to\gamma\gamma$ under better theoretical control

disadvantage:

* lower rate than inclusive Higgs production

[Higgs + Jet in the SM, Higgs + Jet]

SM H+jet, partonic processes ($\mathcal{O}(\alpha_S^3 \alpha)$, mainly via top loops):

simulations: $pp \to H + \text{jet}, H \to \gamma\gamma$ [Abdullin et al. '98 & '02; Zmushko '02] $pp \to H + \text{jet}, H \to \tau^+ \tau^- \to l^+ l^- p_T$ [Mellado et al. '05]

show: H + jet production (e.g. with $p_{T,\text{jet}} \ge 30 \text{ GeV}$, $|\eta_{\text{jet}}| \le 4.5$) is a promising alternative (supplement) to the inclusive SM Higgs production for $m_H \approx 100 - 140 \text{GeV}$.

[Higgs + Jet in the SM, Higgs + Jet]

available codes: SM:

- Higgsjet [de Florian, Grazzini, Kunszt '99] NLO QCD cross section for $pp \rightarrow H + \text{jet}$ (large m_t approx.) also: soft gluon resummation [de Florian, Kulesza, Vogelsang '05]
- HqT [Bozzi, Catani, de Florian, Grazzini '03 & '06] p_T -distribution for $pp \rightarrow H + X$ (large m_t approx.) including resummation at NLL + LO and NNLL + NLO QCD accuracy
- MC@NLO [Frixione, Webber '02; Frixione, Nason, Webber '05] contains $pp \rightarrow H + X$ event generation at NLO QCD accuracy (large m_t approx.)
- FEHiP [Anastasiou, Melnikov, Petriello '05] NNLO QCD differential cross section for $pp \rightarrow H + X$ (large m_t approx.)
- HPro [Anastasiou, Bucherer, Kunszt '09] corrects large m_t approx. NNLO QCD differential predictions by finite m_t/m_b terms from NLO QCD

NNLO QCD accuracy $\propto 10\%$ (scale variation)

 \rightarrow further improvements need to consider other 10%-ish effects

[Higgs + Jet in the SM, Higgs + Jet]

available codes: MSSM:

• HJET 1.3 [OBr, Hollik '03; '07]

LO QCD full MSSM (no approximations) & LO QCD SM (no approximations):

$$\sigma_{\text{hadronic}}^{\text{total}}, \frac{d\sigma_{\text{hadronic}}}{d\sqrt{\hat{s}}}, \frac{d\sigma_{\text{hadronic}}}{dp_{T,\text{jet}}}, \frac{d\sigma_{\text{hadronic}}}{d\eta_{\text{jet}}}, \frac{d^2\sigma_{\text{hadronic}}}{dp_{T,\text{jet}}d\eta_{\text{jet}}}, \dots$$

• LO Contributions to Higgs + Jet

• LO Contributions to Higgs + Jet

This work was triggered by a recent theoretical study of SM Higgs + high- p_T jet production [Keung, Petriello '09] which looked at:

- 1. finite quark mass (m_t, m_b) effects on the p_T distribution \rightarrow already included in our calculation [OBr, Hollik '03; '07]
- 2. electroweak loop effects on the p_T distribution
- 5-flavour scheme
- The Higgs + one high- p_T jet final state suggests :
 - use a 5-flavour scheme
 - i.e. to consider bottom quarks as distributed in the proton.

[LO Contributions to Higgs + Jet]

– Gluon & Light Quark (u, d, s, c) QCD Contribution : $\mathcal{O}(\alpha_S^3 \alpha)$ gluon fusion, $gg \to Hg$

quark gluon scattering, $qg \rightarrow Hq$

quark anti-quark annihilation, $q\bar{q} \to Hg$

[LO Contributions to Higgs + Jet]

- Bottom Quark QCD Contribution : $\mathcal{O}(\alpha_S \alpha)$ quark gluon scattering, $bg \to Hb$

quark anti-quark annihilation, $b\overline{b} \to Hg$

[LO Contributions to Higgs + Jet]

- Light Quark (u, d, s, c) EW Contribution : $\mathcal{O}(\alpha_S \alpha^3)$

[Mrenna, Yuan '96; Keung, Petriello '09]

quark gluon scattering, $qg \rightarrow Hq$

quark anti-quark annihilation, $q \overline{q} \rightarrow H g$ crossed diagrams

– Bottom Quark EW Contribution : $\mathcal{O}(\alpha_S \alpha^3)$ [Mrenna, Yuan '96] quark gluon scattering, $bg \to Hb$

[LO Contributions to Higgs + Jet]

quark anti-quark annihilation, $b\overline{b} \rightarrow Hg$: crossed diagrams

• Numerical Results

– LHC

differential hadronic cross sections for $\sqrt{S}=10\,{\rm TeV}$

$$rac{d\sigma(S, p_{T, ext{jet}})}{dp_{T, ext{jet}}}, \ |\eta_{ ext{jet}}| < 4.5$$

 $rac{d\sigma(S, \eta_{ ext{jet}})}{d\eta_{ ext{jet}}}, \ p_{T, ext{jet}} > 30 \, ext{GeV}$

[Numerical Results, LHC]

[Numerical Results, LHC]

 $p_{T,jet}$ and η_{jet} -distributions : quark-gluon scattering ($m_H = 120 \text{ GeV}$)

[Numerical Results, LHC]

[Numerical Results, LHC]

relative differences in $p_{T,jet}$ and η_{jet} -distributions : ($m_H = 120 \text{ GeV}$)

- Tevatron

differential hadronic cross sections for $\sqrt{S}=1.96\,{\rm TeV}$

[Numerical Results, Tevatron]

 $p_{T,jet}$ and η_{jet} -distributions : quark-gluon scattering ($m_H = 120 \text{ GeV}$) 14 10 QCD+EW (u,d,s,c) QCD+EW (u,d,s,c) QCD (u,d,s,c) top+bottom QCD (u,d,s,c) top QCD (u,d,s,c) top+bottom QCD (u,d,s,c) top b parton b parton 12 1 10 $d\sigma/d\eta_{\rm jet}$ [fb] 8 0.1 6 4 0.01 2 0.001 0 20 40 60 80 100 120 140 160 180 200 -3 -2 2 3 0 -5 4 -4 0 1 $\eta_{\rm jet}~[{\rm GeV}]$ $p_{T,jet} [GeV]$

 $d\sigma/dp_{T,{
m jet}}$ [fb/GeV]

[Numerical Results, Tevatron]

5

[Numerical Results, Tevatron]

 $p_{T,jet}$ and η_{jet} -distributions : $q\bar{q}$ scattering ($m_H = 120 \text{ GeV}$)

[Numerical Results, Tevatron]

relative differences in $p_{T,jet}$ - and η_{jet} -distributions : ($m_H = 120 \text{ GeV}$)

summary

- SM simulations show: Higgs + high- p_T jet production is a promising supplement to the inclusive production.
- Improvements over the present NLO QCD accuracy for the H + jet final state, require the consideration of:
 - electroweak one-loop contributions
 - all bottom quark contributions
- More precise predictions are needed in order to be useful for experimental analyses at the LHC.