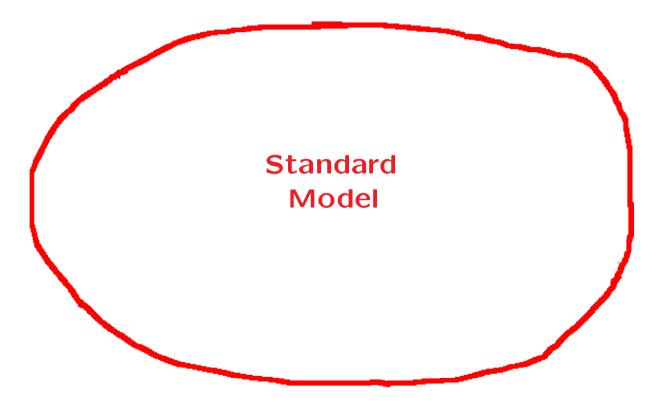
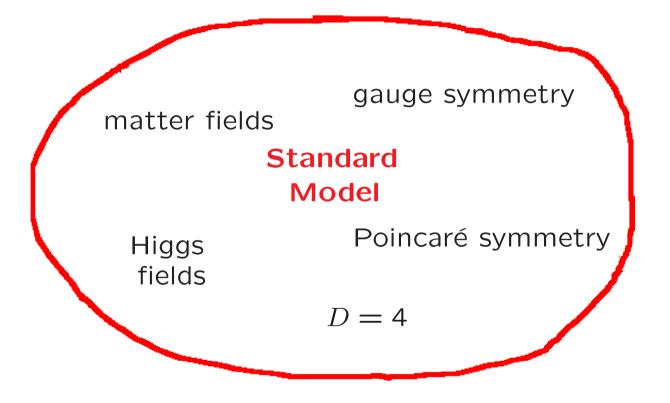
Higgs Bosons in Models beyond the SM

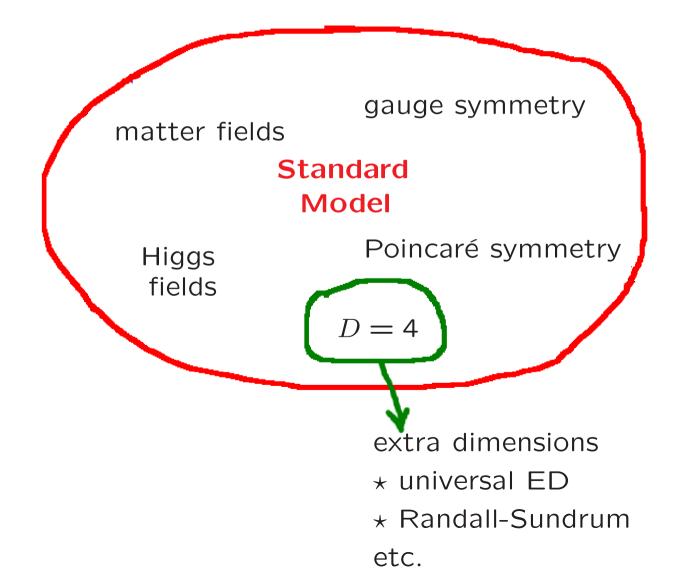
Oliver Brein

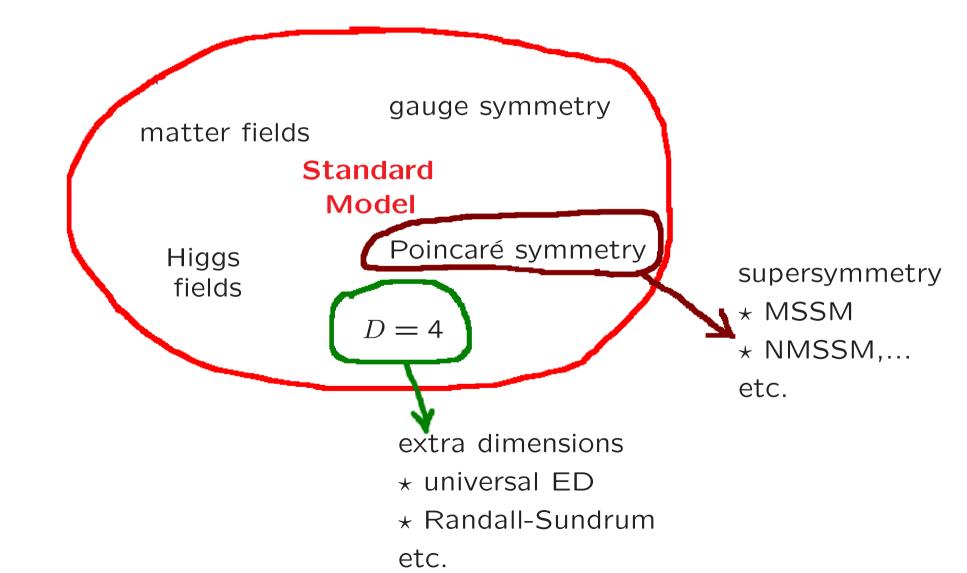

Institute for Particle Physics Phenomenology, University of Durham

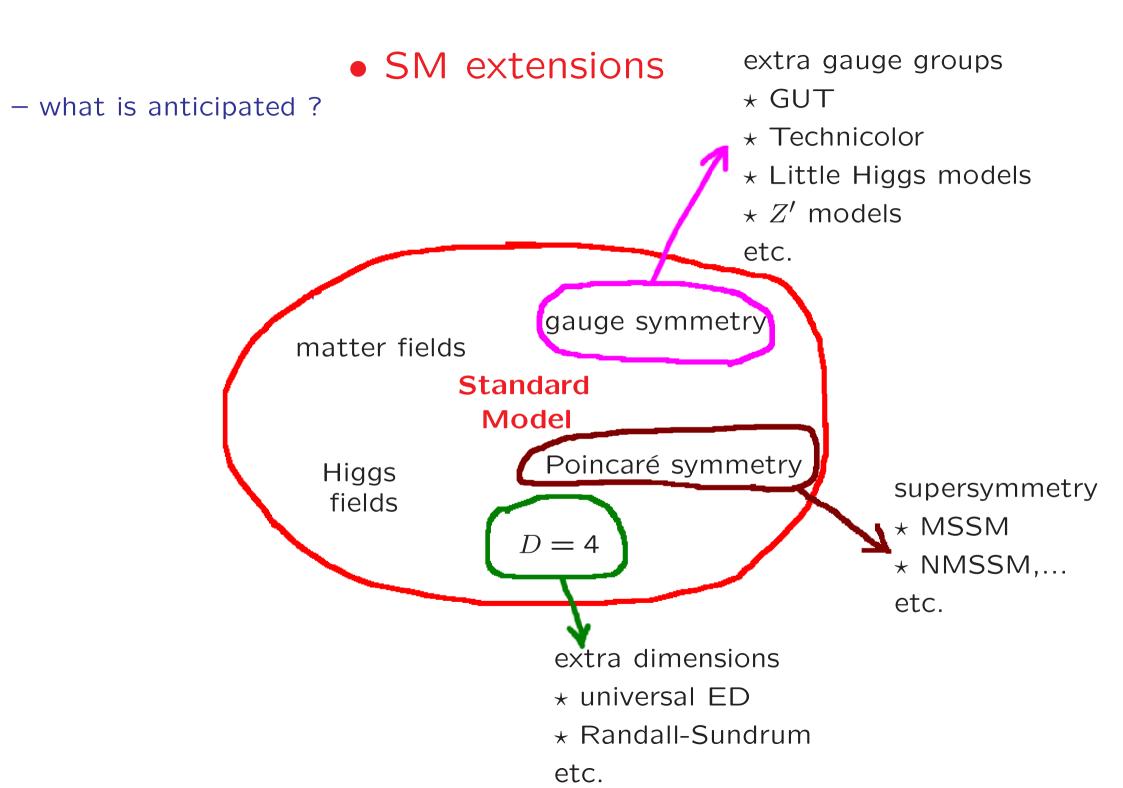
e-mail: Oliver.Brein@durham.ac.uk

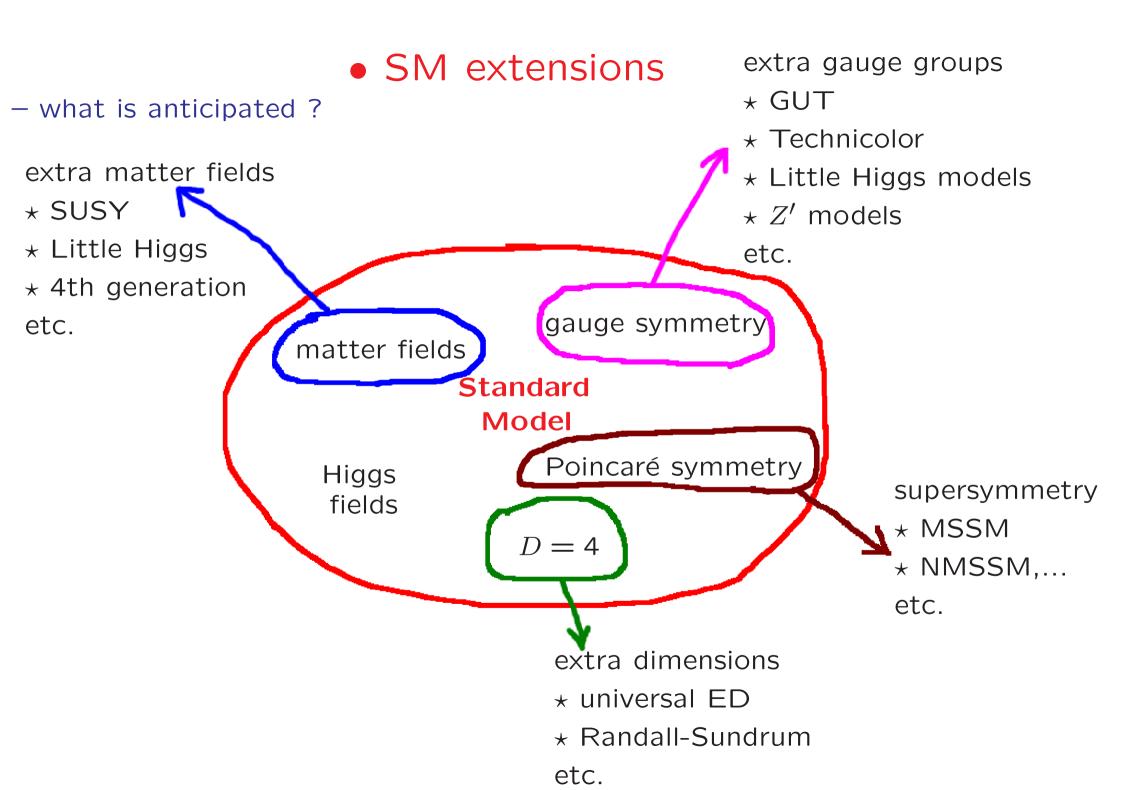

outline

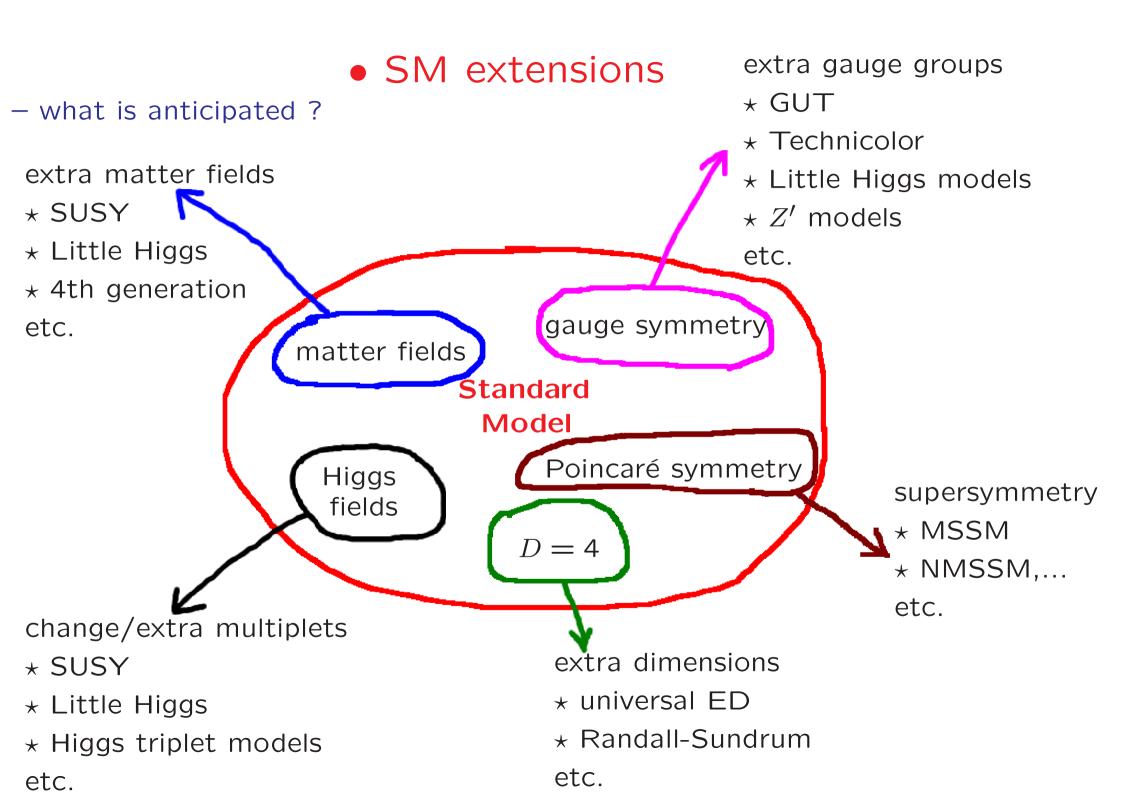
- SM extensions
 - what is anticipated ?
 - what has been studied for ATLAS/CMS ?
- examples of BSM Higgs phenomenology
 - supersymmetric models
 - Little Higgs models
 - extra dimension models
 - simple Higgs sector extensions
- lessons to be learned
 - broader definition of "Higgs boson"
 - generic part of BSM Higgs sectors
 - beyond the standard signatures











– what has been studied for ATLAS/CMS ?

BSM Higgs physics in the TDRs:

- ATLAS-TDR ('99):CP-conserving MSSM Higgs:59 pagesstrongly int. Higgs sector:7 pages
- CMS-TDR('06): CP-conserving MSSM Higgs: 56 pagesHiggs in RS model, $H^{\pm\pm}$ in LHM: 14 pages

[SM extensions, ATLAS/CMS studies]

Recently, the report on the

"Workshop on CP studies and non-standard Higgs physics" (500+ pages) appeared (including some ATLAS/CMS studies).

[Kraml et al. (eds.), hep-ph/0608079]

The following topics on Higgs physics beyond the common lore, SM and MSSM (R-parity conserving & without CP phases that is), have been identified and discussed:

- The CP-Violating Two-Higgs Doublet Model
- The Minimal Supersymmetric Standard Model with CP Phases [ATLAS]
- Supersymmetric Models with an Extra Singlet
- The MSSM with *R*-Parity Violation
- Extra Gauge Groups
- Little Higgs models
- Large Extra Dimensions
- Warped Extra Dim. and the Randall-Sundrum Model
- Higgsless Models
- Strongly Interacting Higgs Sector and Anomalous Couplings
- Technicolor
- Higgs Triplets

[ATLAS/CMS] [CMS] [ATLAS/CMS]

I will touch the following topics from the report:

- The CP-Violating Two-Higgs Doublet Model
- The Minimal Supersymmetric Standard Model with CP Phases
- Supersymmetric Models with an Extra Singlet
- The MSSM with *R*-Parity Violation
- Extra Gauge Groups
- Little Higgs models
- Large Extra Dimensions
- Warped Extra Dim. and the Randall-Sundrum Model
- Higgsless Models
- Strongly Interacting Higgs Sector and Anomalous Couplings
- Technicolor
- Higgs Triplets
- + simple Higgs sector extensions

• examples of BSM Higgs phenomenology

outline for the following:

- supersymmetric models
- Little Higgs models
- extra dimension models
- simple Higgs sector extensions

- supersymmetric models

Supersymmetry ...

... is the extension of the Poincaré-symmetry of space-time

... leads to a symmetry between Fermions & Bosons

gauge theory with minimal SUSY :

- same # of fermionic & bosonic d. o. f.
 - \rightarrow a superpartner of different spin exists for each particle
- couplings are correlated
 - \rightarrow e.g. scalar 4-point int. \leftrightarrow gauge couplings
- superpartners have the same mass
 - \rightarrow SUSY must be broken at the electroweak scale

gauge theory with broken SUSY :

• superpartner masses enter as additional free parameters (essentially)

• MSSM (*R*-parity conserved & no new CP-phases):

The MSSM with R-parity intact and no new CP-phases is (by far) the most well studied model beyond the SM so far.

- content: SM matter, SM gauge bosons
 - + 2 Higgs doublets Φ_1, Φ_2 (*only* consistent with 2 doublets)
 - + Superpartners
- *R*-parity: discrete, multiplicative quantum number

$$R\left(\left\{\begin{array}{c} \text{regular particles} \\ \text{superpartners} \end{array}\right\}\right) = \left\{\begin{array}{c} +1 \\ -1 \end{array} \rightarrow \text{FCNC}, \not\!\!\!L, \not\!\!\!B \text{ avoided} \end{array}\right.$$

- real-valued SUSY parameters \rightarrow no new CP-phases introduced

• MSSM (*R*-parity conserved & no new CP-phases):

Higgs sector:

- $\Phi_1, \Phi_2 \rightarrow 5$ physical Higgs bosons: h^0, H^0, A^0, H^+, H^-
- all Φ^4 -interactions determined by gauge couplings
 - \rightarrow only two Higgs sector input parameters: m_{A^0} , tan β (= v_2/v_1)
 - \rightarrow bound on lightest neutral Higgs mass ($m_{h^0} \lesssim 135 \,\text{GeV}$)
- large quantum corrections to Higgs masses (esp. to m_{h^0})

present status: two-loop precision, see [Heinemeyer, Hollik, Weiglein '06]

[examples of BSM Higgs phenomenology, SUSY models]

• MSSM (*R*-parity conserved & no new CP-phases):

Higgs phenomenology: well developed

example: status of predictions for main neutral Higgs production processes $(H_{1,2,3}^0 = h^0, H^0, A^0\})$:

– gluon fusion, $gg \rightarrow H_i^0$

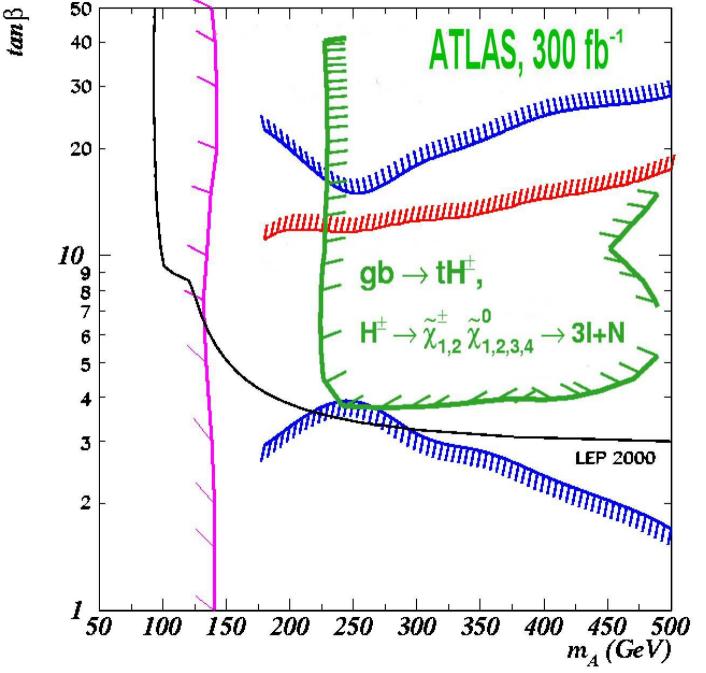
NLO QCD, no superpartners [Djouadi, Spira, Zerwas, Graudenz '91/'93] NLO SUSY-QCD

[Harlander, Steinhauser '04; Harlander, Hofmann '06; Mühlleitner, Spira '06]

- weak boson fusion, $qq \rightarrow qqH_i^0$ NLO SUSY-QCD [Djouadi, Spira '00]
- Higgs Strahlung, $q\bar{q}' \rightarrow VH_i^0(V = W, Z)$ NLO SUSY-QCD [Djouadi, Spira '00]
- $t\bar{t}H_i^0, b\bar{b}H_i^0$ $LO, Q\bar{Q} \rightarrow H_i^0, gg \rightarrow Q\bar{Q}H_i^0 (Q = t, b) \text{ [Dicus, Willenbrock '89]}$ NLO QCD, no superpartners [Dawson, Jackson, Reina, Wackeroth '03] $b\bar{b} \rightarrow H_i^0$

NLO SUSY-QCD & NLO EW, [Dittmaier, Krämer, Mück, Schlüter '06]

[examples of BSM Higgs phenomenology, SUSY models]


• MSSM (*R*-parity conserved & no new CP-phases):

Higgs phenomenology: some thoughts on future directions

- provide all relevant predictions also for light (allowed) superpartners
 LHC Higgs physics: many relevant loop-induced processes
 e.g. 3-point vertices: ggH⁰_i, γγH⁰_i, γW[±]H[∓], ZW[±]H[∓],
 4-point vertices: ggH⁰_iH⁰_j, ggH⁰_i{γ, Z}, ggH[±]W[∓], gg{γ, Z, W⁺}{γ, Z, W⁻}
 SM + superpartner particles appear both at LO (= one-loop)
- take full \hat{s} and \hat{t} -dependence into account in physics simulations (not just K-factors, angular distributions may change as well)
- study scenarios with allowed decays $H_i^0 \rightarrow$ superpartners
 - \rightarrow may allow for new search strategies example: improvement of H^{\pm} search in the wedge-region (\rightarrow plot)

[examples of BSM Higgs phenomenology, SUSY models]

example: H^{\pm} search with $H^{\pm} \rightarrow \chi_1^0 \chi_1^{\mp}$ allowed:

great improvement of the ATLAS H^{\pm} discovery reach in the wedge-region if $m_{H^{\pm}} > m_{\chi_1^0} + m_{\chi_1^+}$ [Hansen et al.'05]

[examples of BSM Higgs phenomenology, SUSY models]

• MSSM (*R*-parity conserved & no new CP-phases):

Higgs phenomenology: some thoughts on future directions

- provide all relevant predictions also for light (allowed) superpartners
 LHC Higgs physics: many relevant loop-induced processes
 e.g. 3-point vertices: ggH⁰_i, γγH⁰_i, γW[±]H[∓], ZW[±]H[∓],
 4-point vertices: ggH⁰_i, ggH⁰_i, ggH⁰_i {γ, Z}, ggH[±]W[∓], gg{γ, Z, W⁺}{γ, Z, W⁻}
 - SM + superpartner particles appear both at LO (= one-loop)
- take full \hat{s} and \hat{t} -dependence into account in physics simulations (not just K-factors, angular distributions may change as well)
- study scenarios with allowed decays $H_i^0 \rightarrow$ superpartners
 - \rightarrow may allow for new search strategies example: improvement of H^{\pm} search in the wedge-region (\rightarrow plot)
- adopt refined SM Higgs search strategies (where possible) e.g. $gg \rightarrow h^0$ + high- p_T jet [OBr, Hollik '03 and work in progress]
- precise predictions for signals require SUSY-loops in background too (not just SM background), e.g. superpartner loops in $gg \rightarrow WW, \gamma\gamma$, etc.

• MSSM with *R*-parity violation:

consequences for Higgs phenomenology :

- Higgs bosons mix with sleptons (5 doublets, 3 complex singlets) 6 sneutrino d.o.f. + 3 neutral Higgs d.o.f \rightarrow 5 H_i^0 , 4 A_i^0 12 charged slepton d.o.f. + 2 charged Higgs d.o.f \rightarrow 7 H_i^{\pm}
- Higgs-like and slepton-like decay channels open up
- couplings not entirely \propto mass
 - \rightarrow typical Higgs-signature can be obscured if mixing is strong

[examples of BSM Higgs phenomenology, SUSY models]

• SUSY models with an extra singlet (NMSSM,mnSSM):

Superpotential of MSSM contains μ -term (μ : mass dimension 1):

$$\begin{split} W_{\text{MSSM}} &= W_{\text{super-Yukawa}} + \epsilon_{ij} \mu \widehat{H}_{d}^{i} \widehat{H}_{u}^{i} \\ \mathcal{L}_{\text{soft}} &= -m_{H_{d}}^{2} |H_{d}|^{2} - m_{H_{u}}^{2} |H_{u}|^{2} - (\mu B_{\mu} \epsilon_{ij} H_{u}^{i} H_{d}^{j} + \text{h.c.}) \\ &+ [\text{sfermion} + \text{gaugino mass terms}] \end{split}$$

problem:

Higgs mass formulae: supersymmetric GUT:

 μ should be $\approx \mathcal{O}(SUSY$ breaking scale) $\leftrightarrow \mu$ should be of order M_{GUT}

solution: MSSM + singlet superfield \hat{S} (contains complex scalar field S):

- in the minimum of the scalar potential H_u, H_d, S acquire VEVs
- MSSM μ -term generated dynamically $\mu_{eff} = \lambda \langle S \rangle$ (λ dimensionless)
- μ_{eff} is naturally $\mathcal{O}(\text{SUSY} \text{ breaking scale})$

[examples of BSM Higgs phenomenology, SUSY models]

• SUSY models with an extra singlet (NMSSM,mnSSM):

variant 1: NMSSM (Next-to-minimal supersymmetric Standard Model)

$$W_{\text{NMSSM}} = W_{\text{super-Yukawa}} + \epsilon_{ij}\lambda\widehat{S}\widehat{H}_{d}^{i}\widehat{H}_{u}^{i} + \frac{\kappa}{3}\widehat{S}^{3}$$
$$\mathcal{L}_{\text{soft}} = -m_{H_{d}}^{2}|H_{d}|^{2} - m_{H_{u}}^{2}|H_{u}|^{2} - m_{S}^{2}|S|^{2}$$
$$- (\lambda A_{\lambda}\epsilon_{ij}SH_{u}^{i}H_{d}^{j} + \frac{\kappa}{3}A_{\kappa}S^{3} + \text{h.c.})$$
$$+ [\text{sfermion} + \text{gaugino mass terms}]$$

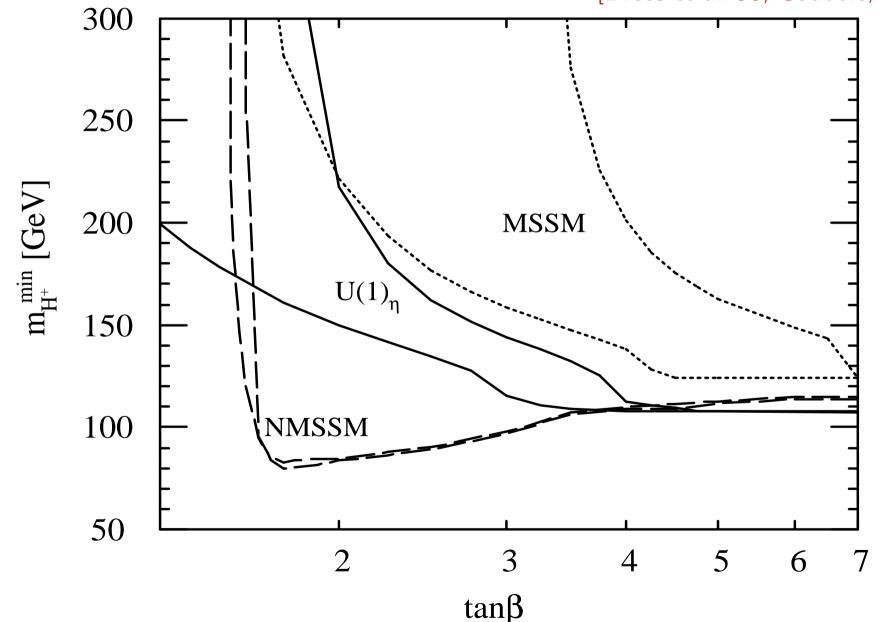
variant 2: mnSSM (minimal non-minimal supersymmetric Standard Model) [Panagiotakopoulos, Pilaftsis '00; Dedes et al. '00]

$$W_{\text{mnSSM}} = W_{\text{super-Yukawa}} + \epsilon_{ij}\lambda \widehat{S}\widehat{H}_{d}^{i}\widehat{H}_{u}^{i} [+t_{F}\widehat{S}]$$
$$\mathcal{L}_{\text{soft}} = -m_{H_{d}}^{2}|H_{d}|^{2} - m_{H_{u}}^{2}|H_{u}|^{2} - m_{S}^{2}|S|^{2} + t_{S}S$$
$$- (\lambda A_{\lambda}\epsilon_{ij}SH_{u}^{i}H_{d}^{j} + \text{h.c.})$$

+ [sfermion + gaugino mass terms]

 t_F -term usually too suppressed to play a role at TeV-colliders

 [examples of BSM Higgs phenomenology, SUSY models]
 SUSY models with an extra singlet (NMSSM,mnSSM): (some) consequences for Higgs phenomenology :


similar for both models:

- Higgs sector: 2 doublets + 1 complex singlet \rightarrow $H_1^0, H_2^0, H_3^0, A_1^0, A_2^0, H^{\pm}$
- relaxed theoretical upper bound on the lightest Higgs mass ($\approx 150\,\text{GeV})$
- relaxed LEP-bound on mass of H_1^0 and H^{\pm} (about 80 GeV, \rightarrow plot)
- H^{\pm} production and decay in LO unchanged compared to MSSM
- Decays heavy Higgs \to 2 Higgs bosons often possible \to problematic to see at LHC if lighter Higgs bosons decay mainly to $b\overline{b}$

[examples of BSM Higgs phenomenology, SUSY models]

example: relaxed indirect H^{\pm} mass bound in NMSSM:

 $m_{H^{\pm}} \approx m_W^2 + m_{A_1}^2 - \lambda^2 v^2/2$ and LEP-bound on m_{A_1} lower than on m_A^{MSSM} [Drees et al.'98; Godbole, Roy '06]

• SUSY models with an extra singlet (NMSSM,mnSSM): (some) consequences for Higgs phenomenology :

distinctive features:

- # of Higgs sector parameters: 6 (NMSSM) and 5 (mnSSM)
 - \rightarrow mnSSM more restrictive than NMSSM, e.g.:
 - mnSSM mass sum rule (not present in NMSSM) :

$$m_{H_1}^2 + m_{H_2}^2 + m_{H_3}^2 = m_Z^2 + m_{A_1}^2 + m_{A_2}^2$$

- mnSSM Higgs-Z coupling complementarity :

$$g_{H_1ZZ}^2 = g_{H_2A_1Z}^2, \qquad \qquad g_{H_2ZZ}^2 = g_{H_1A_1Z}^2$$

 \rightarrow testing such relations crucial to distinguish between the models

 Little Higgs models
 motivation: Higgs boson naturally light if Higgs mass protected by a symmetry (i.e. mass → 0 should increase symmetry)
 well-known: supersymmetry
 here: shift symmetry → Higgs bosons as pseudo-Goldstone bosons

classical naturalness argument:

Higgs mass m_H sensitive to cut-off scale Λ of the theory:

one expects $M_H \propto (\frac{g}{4\pi}) \Lambda$ (from one-loop rad. cor.)

- → with $g \approx O(1)$ and $m_H = O(100)$ GeV from EW precision data one gets $\Lambda \approx 1$ TeV
- \rightarrow strong coupling dynamics should set in at around 1 TeV

 \rightarrow ruled out by EW precision data!

idea of Little Higgs models: one-loop rad. cor. cancel due to a symmetry Then $M_H \propto (\frac{g}{4\pi})^2 \Lambda \rightarrow m_H = \mathcal{O}(100) \text{ GeV}$ for $\Lambda \approx 10 \text{ TeV}$ \rightarrow Higgs naturally light and no problems with EW precision data idea of Little Higgs models: one-loop rad. cor. cancel due to a symmetry Then $M_H \propto (\frac{g}{4\pi})^2 \Lambda \rightarrow m_H = \mathcal{O}(100) \text{ GeV}$ for $\Lambda \approx 10 \text{ TeV}$ \rightarrow Higgs naturally light and no problems with EW precision data

realization: collective symmetry breaking principle

- \rightarrow class of models (effective theories, applicable up to $\approx 10\,\text{TeV})$
- \rightarrow new TeV-scale (f) gauge bosons, fermions and scalars appear
- \rightarrow at the EW-scale only scalars appear

[examples of BSM Higgs phenomenology, Little Higgs models]

Higgs sectors of LH models		
Model	EW-scale scalars	TeV-scale f scalars
Minimal moose	$\Phi_1, \Phi_2, \Sigma, S^c$	(none)
Minimal moose with $SU(2)_C$	Φ_1, Φ_2	$\mathbf{\Sigma}^r, S^c_{\pm}, S^r$
Moose with T-parity	Φ_1, Φ_2	$\Phi_{3,4,5}, \Sigma_{1,2,3}^r, S_{1,,5}^c, P_{1,2,3}$
Littlest Higgs	Φ	Σ
SU(6)/Sp(6) model	Φ_1, Φ_2	S^c
Littlest Higgs with SU(2) $_C$	Φ	Σ, Σ^r, P
Littlest Higgs with T-parity	Φ	Σ
SU(3) simple group	$\boldsymbol{\Phi}, P$	(none)
SU(4) simple group	Φ_1, Φ_2, P_1, P_2	$S_{1}^{c}, S_{2}^{c}, S_{3}^{c}$
SU(9)/SU(8) simple group	Φ_1, Φ_2	S_{1}^{c}, S_{2}^{c}

with Φ scalar doublet,

 S^c complex scalar singlet,

- S^r real scalar singlet,
- P pseudoscalar singlet,
- Σ complex triplet,
- Σ^r real triplet.

[examples of BSM Higgs phenomenology, Little Higgs models]

(some) consequences for Higgs phenomenology:

example: Littlest Higgs model : 1 doublet at EW scale

- Higgs couplings identical to SM up to $\frac{v}{f}$ -corrections $(\frac{v}{f} \approx \frac{250}{1000} = \frac{1}{4})$ $\rightarrow \sigma \times BR$ deviates from SM by $(\frac{v}{f})^2 \approx$ few %.

 \rightarrow requires % accuracy measurements to distinguish from SM

- Test of divergency cancellation relations The 4-point interactions of a Higgs bosons Hwith heavy gauge bosons V_i have to fulfil

$$\sum_{i} G_{HHV_iV_i} = 0$$

in order to cancel one-loop quadratic divergencies

in the Higgs self energy.

After EWSB the $G_{HHV_iV_i}$ give rise to corresponding $G_{HV_iV_i}$ -couplings.

 \rightarrow Measurement of all $\sigma(q\bar{q} \rightarrow V_i^{\star} \rightarrow HV_i)$ could give information on $G_{HHV_iV_i}$. extra dimension models

example: 5D universal extra dimensions (UED)

- mass scale $1/R>250-500\,{\rm GeV}$ [Apelquist,.. '..]

 \rightarrow mainly KK-modes n=0,1,2 relevant at LHC

- KK-parity conserved: multiplicative quantum number $(-1)^n$
- \rightarrow n=1 Higgs-KK-modes can't decay into just SM particles
- \rightarrow appearent Higgs sector:
- n = 0 equivalent to SM Higgs sector
- n = 1 doesn't look like Higgs
- n = 2 KK-modes can decay again in n = 0-modes
- \rightarrow look like heavy Higgs bosons

→ effective Higgs sector: $h^0, H^0 = h^0_{(2)}, A^0 = G^0_{(2)}, H^{\pm} = G^{\pm}_{(2)}$ (like 2HDM)

[Schabinger, Wells '05....]

[Cerdeño, Dedes, Underwood '06]

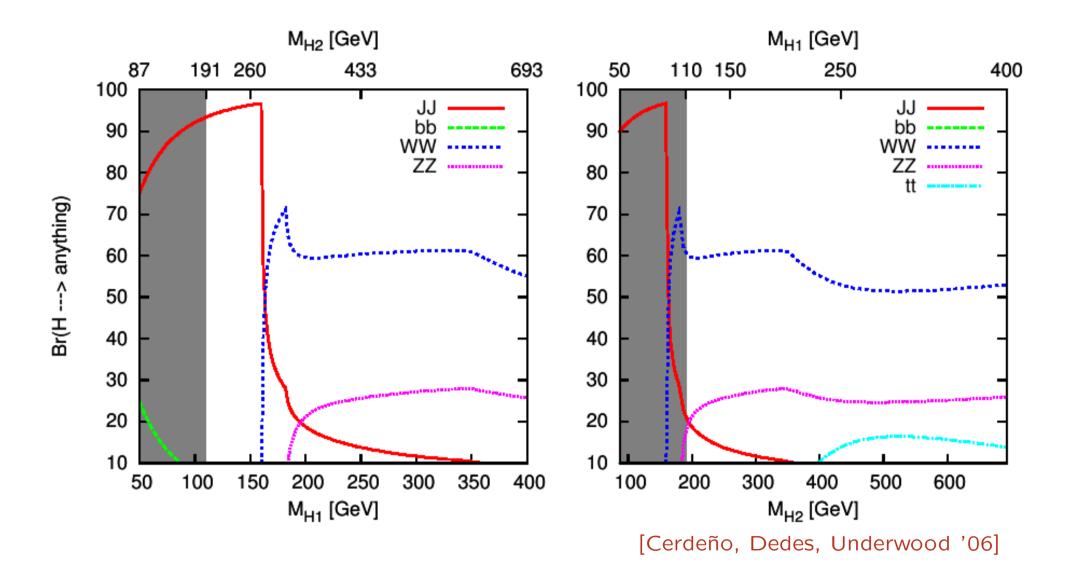
- simple Higgs sector extensions
- singlet extensions

motivation: the SM Higgs doublet Φ is the only multiplet which can have renormalizable interactions with a hidden, SM-singlet sector:

 $\mathcal{L}_{\text{Higgs-hidden sector int.}} \propto (\Phi^{\dagger} \Phi) (\phi^{(\dagger)} \phi)_{\text{hidden}}$

Extension of the SM by ...

- ... a complex SU(2)-singlet scalar: Higgs sector: H_1^0, H_2^0, A_1^0
 - hidden sector singlet: A_1^0 eaten by spontaneously broken $U(1)_{hidden} \rightarrow H_1^0, H_2^0$ remain
 - minimal phantom sector (contains extended neutrino sector): global U(1) symmetry broken $\rightarrow H_1^0, H_2^0, A_1^0 (= J, \text{ massless Goldstone})$


... a real SU(2)-singlet scalar: Higgs sector : H_1^0, H_2^0 [v.d. Bij '06; O'Connell et al. '06; Bahat-Treidel, et al.'06]

consequences for Higgs phenomenology

- mixing of new scalar(s) with ordinary Higgs d.o.f.
- couplings of scalars to SM particles reduced by mixing angles
- potentially large BR(Higgs \rightarrow invisible)

[examples of BSM Higgs phenomenology, simple Higgs sector extensions]

example: almost invisible decay of lightest Higgs in phantom sector model

lessons to be learned

- broader definition of "Higgs boson"
- \star in the SM a transparent definition exists:
- one scalar doublet (4 real d.o.f.) acquires a VEV
 - \rightarrow 3 would-be Goldstone bosons form W_L^+, W_L^- and Z_L
 - \rightarrow one massive physical scalar: the Higgs boson

* in extended models an unambiguous definition can be tricky: problems:

- several scalar weak multiplets, not all acquiring a VEV,
 mix among each other due to self-interaction (e.g. Inert Higgs model)
- SUSY models with $I\!\!\!/$: sneutrino/selectron mix with "Higgs" multiplets (e.g. R-parity violating MSSM)
- electroweak singlet scalars can mix with neutral "Higgs" state (e.g. singlet extension of SM, NMSSM, RS model)

suggested definition:

A Higgs boson is a physical scalar d.o.f from

a) an electroweak multiplet triggering EWSB by its VEV or

b) a multiplet mixing with such states

– generic part of BSM Higgs sectors

a typical BSM Higgs sector is a combination of a few scalar (real, S^r , complex, S^c) or pseudoscalar electroweak singlets P, electroweak doublets Φ , electroweak triplets Σ (real or complex)

multiplets physical states models Φ : H^0 : SM $\Phi, S^r : H_1^0, H_2^0$: simple extension, RS model, ... $\Phi, S^c : H_1^0, H_2^0, A^0$: simple extension, ... Φ_1, Φ_2 : h^0, H^0, A^0, H^{\pm} : 2HDM, MSSM, some LH models, 5D-UED (effectively), ... $\Phi_1, \Phi_2, S^c : H_1^0, H_2^0, H_3^0, A_1^0, A_2^0, H^{\pm}$: NMSSM, mnSSM, some LH models, ... $\Phi, \Sigma : H_1^0, H_2^0, A_1^0, H^{\pm}, H^{\pm\pm}$: Higgs triplet model, ... $5\Phi_i, 3S_i^c$: $5H_i^0, 4A_i^0, 7H_i^{\pm}$: R-parity viol. MSSM with $I\!\!\!/$: some LH models, ... •

 \rightarrow large parts of Higgs phenomenology is rather model independent.

[lessons]

beyond the standard signatures

expect the unexpected ! as for example:

- scalar particles strongly but not entirely coupling \propto mass could be: MSSM with explicit *R*-parity violation
- scalar particles strongly decaying invisibly

could be: singlet extensions of SM, large extra dimensions, Majoron of MSSM with spontaneous R-parity violation

- 2 CP-even scalars, 1 CP-odd, 1 charged found could be: MSSM, NMSSM, 5D-UED model, several LH models
- almost SM behaviour but significant small deviations could be: MSSM/2HDM almost in decoupling limit, Littlest Higgs model

• CP-violation in the Higgs sector