Phänomenologie von Higgs-Bosonen

Oliver Brein

Physikalisches Institut,

Universität Freiburg

e-mail: Oliver.Brein@physik.uni-freiburg.de

outline :

- Higgs Bosons: why and what to expect ?
 - Electroweak Symmetry Breaking, Higgs mechanism
 - Restrictions on Higgs Sectors
 - Higgs in the Standard Model and Extensions
- How to find Higgs Bosons ?
 - Higgs Production and Decay
 - Higgs Search Programme
- Selected Higgs Physics Projects
 - SM Higgsstrahlung
 - Higgs + high- p_T Jet: MSSM vs. SM
 - HiggsBounds

• Higgs Bosons: why and what to expect ?

– Electroweak Symmetry Breaking, Higgs mechanism

Experiment:Theory:massive gauge bosons exist \rightarrow problem \leftarrow electroweak gauge symmetry (W^{\pm},Z) forbids mass termsfor gauge bosonsfor gauge bosons

solution: spontaneous symmetry breaking (SSB):

introduce gauge invariant dynamics, which breaks gauge symmetry in the ground state.

– Electroweak Symmetry Breaking, Higgs mechanism

Experiment:Theory:massive gauge bosons exist \rightarrow problem \leftarrow electroweak gauge symmetry (W^{\pm},Z) forbids mass termsfor gauge bosonsfor gauge bosons

solution: spontaneous symmetry breaking (SSB):

introduce gauge invariant dynamics, which breaks gauge symmetry in the ground state.

One major task in high energy particle physics is: to unravel the nature of electroweak symmetry breaking.

– Electroweak Symmetry Breaking, Higgs mechanism

Experiment:Theory:massive gauge bosons exist \rightarrow problem \leftarrow electroweak gauge symmetry (W^{\pm},Z) forbids mass termsfor gauge bosonsfor gauge bosons

solution: spontaneous symmetry breaking (SSB):

introduce gauge invariant dynamics, which breaks gauge symmetry in the ground state.

SSB can be realised by

- weakly interacting scalar gauge multiplets that acquire a VEV
 → Higgs mechanism
- strongly interacting dynamics,
- e.g. particles that form scalar condensates with a VEV

[Higgs Bosons: why and what ?, EWSB, Higgs mechanism]

6

[Higgs Bosons: why and what ?, EWSB, Higgs mechanism]

- Restrictions on Higgs Sectors
- Experimental situation so far:
 - no Higgs signal.
 - no significant deviation from SM.

Theory:

- many distinct possibilities to realise the Higgs mechanism which meet major constraints, like
 - the electroweak rho-parameter $ho_{\exp.} = \frac{m_W}{\cos\theta_W m_Z} \approx 1$ up to a few per mille
 - absence of flavour changing neutral currents (FCNC).
 - upper bounds on production cross sections
 from negative direct search results (LEP, Tevatron)

 \longrightarrow take extensions of the SM (Higgs sector) seriously

– Higgs in the Standard Model and Extensions

SM: matter, gauge bosons + 1 Higgs doublet Φ \rightarrow 1 physical Higgs boson

THDM:

(two Higgs doublet model) SM matter, SM gauge bosons + 2 Higgs doublets Φ_1, Φ_2

MSSM:

(minimal supersymmetric standard model)

SM matter, SM gauge bosons

+ 2 Higgs doublets Φ_1, Φ_2

+ Superpartners

 \rightarrow 5 physical Higgs bosons: h^0, H^0, A^0, H^+, H^-

note! : charged Higgs bosons cannot appear with one Higgs doublet

discovery of H^{\pm} : unambiguous sign of an extended Higgs sector

Consequences of Supersymmetry for the MSSM Higgs sector

- MSSM *only* consistent with two Higgs doublets
- all Φ^4 -interactions determined by gauge couplings

 \rightarrow only two Higgs sector input parameters: m_{A^0} (mass of A^0), $\tan \beta$ (= v_2/v_1 , ratio of VEVs) instead of seven in the THDM: $m_{A^0}, \tan \beta$ + $m_{h^0}, m_{H^0}, m_{H^{\pm}}, \alpha, M^2 (= v^2 \lambda_5)$

in the MSSM functions of m_{A^0} , tan β

 \rightarrow bound on lightest neutral Higgs mass ($m_{h^0} \lesssim 135 \,\text{GeV}$)

• large quantum corrections to Higgs masses (esp. to m_{h^0}) present status:

```
real MSSM: three-loop (SUSY QCD) precision
```

[Harlander, Kant, Mihaila, Steinhauser '08] complex MSSM: two-loop (SUSY QCD) precision [Heinemeyer, Hollik, Rzehak, Weiglein '07] • How to find Higgs Bosons ?

– Higgs Production and Decay

Higgs mechanism \longrightarrow Higgs couplings \propto mass

 e^- , u_- , d_- quarks, gluons \longrightarrow (essentially) no coupling to the Higgs

→ At colliders: Higgs couples to heavy intermediate particles with non-suppressed couplings to ordinary matter.

→ most important couplings:

There is a huge number of gluons

- with small momentum fractions
- still having enough energy to produce Higgs particles.

Higgs mechanism \longrightarrow Higgs couplings \propto mass

 \rightarrow Problem: ordinary matter is made of very light particles:

 e^- , u_- , d_- quarks, gluons \longrightarrow (essentially) no coupling to the Higgs

- → At colliders: Higgs couples to heavy intermediate particles with non-suppressed couplings to ordinary matter.
- → most important couplings at high energy hadron colliders:

Higgs mechanism \longrightarrow Higgs couplings \propto mass

 \rightarrow Problem: ordinary matter is made of very light particles:

 $e^-,u\text{-},\ d\text{-}\mathsf{quarks},\ \mathsf{gluons} \longrightarrow$ (essentially) no coupling to the Higgs

- At colliders: Higgs couples to heavy intermediate particles with non-suppressed couplings to ordinary matter.
- → most important couplings at high energy hadron colliders:
- ... for neutral Higgs production:

Therefore, most important couplings at high energy hadron colliders ... for neutral Higgs production:

... for charged Higgs production:

[How to find Higgs Bosons ?, Higgs Production and Decay]

SM Higgs decay branching ratios and

signal significance @ LHC

note!

rate alone is not enough! signals need to be silhouetted against huge QCD background

Predictions: charged Higgs cross sections @ LHC:

– Higgs Search Programme

1. establish a Higgs signal

production & decay \longrightarrow rates & signatures, mass measurement

2. make sure it's a Higgs (measuring properties)

angular distributions \longrightarrow spin, parity, CP properties partial decay widths \longrightarrow couplings to other particles ...

3. detailed probe of the Higgs sector (determining the underlying model) pair production → self-couplings ("reconstruction" of the Higgs potential) quantum effects → information on particles too heavy to be directly observed ...

Step 3: performance of the LHC limited, ideal task for the ILC.

• Selected Higgs Physics Projects

outline of the following:

– SM Higgsstrahlung

- Higgs + high- p_T Jet: MSSM vs. SM

- HiggsBounds

– SM Higgsstrahlung
– SM Higgsstrahlung

Our calculation: [OBr, Djouadi, Harlander '03] Observation 1: In LO/NLO QCD the cross section factorizes (V = W, Z): $\frac{d\sigma}{dk^2}(q\bar{q} \rightarrow HV) = \sigma(q\bar{q} \rightarrow V^*(k)) \cdot \frac{d\Gamma}{dk^2}(V^*(k) \rightarrow HV)$. Observation 2: Complete NNLO QCD corr. to $\sigma(q\bar{q} \rightarrow V^*)$ are known

[Hamberg, van Neerven, Matsuura '91; Harlander, Kilgore '02].

 \rightarrow Idea : Use $\sigma_{NNLO}(q\bar{q} \rightarrow V^{\star})$ to evaluate $\sigma(pp \rightarrow HV)$.

status of theory predictions:

SM, LO [Glashow, Nanopoulos, Yildiz '78]

SM, NLO QCD [Han, Willenbrock ' 91]

SM, NNLO QCD [OBr, Djouadi, Harlander '03]

SM, NLO EW [Ciccolini, Dittmaier, Krämer '03]

MSSM, NLO SUSY-QCD [Djouadi, Spira '00]

[Selected Projects, SM Higgsstrahlung]

 $M_{\mu}[GeV]$

- Higgs + high- p_T Jet: MSSM vs. SM

– Higgs + high- p_T Jet: MSSM vs. SM

[OBr, Hollik '03; '07] (full MSSM), [Field, Dawson, Smith '04] (MSSM, no superpartners),

[Langenegger et al. '06] (MSSM with soft-gluon resummation, no superpartners)

Motivation:

* richer kinematical structure compared to inclusive Higgs production

* promising simulation results in the SM case

[Abdullin et al. '98 & '02; Zmushko '02; Mellado et al. '05]

* process loop-induced \rightarrow potentially large effects from virtual particles

partonic processes similar to the SM:

 $\begin{array}{ll} \text{gluon fusion} & gg \to h^0 g \text{,} \\ \text{quark-gluon scattering} & q(\bar{q})g \to h^0 q(\bar{q}) \text{,} \\ q\bar{q} \text{ annihilation} & q\bar{q} \to h^0 g \end{array}$

but: * different Higgs Yukawa-couplings : $g_{q\bar{q}h^0}^{MSSM} = g_{q\bar{q}H}^{SM} \times f_q(\alpha, \beta)$ \rightarrow mainly change of overall rate

* additional superpartner-loops (even additional topologies) \rightarrow also angular distribution changed

Feynman graphs :

gluon fusion, $gg \rightarrow h^0 g$ quark loops

superpartner loops

[Selected Projects, Higgs + Jet]

quark gluon scattering, $qg \rightarrow h^0 q$ quark loops

[Selected Projects, Higgs + Jet]

quark anti-quark annihilation, $q\bar{q} \rightarrow h^0 g$ quark loops

superpartner loops

b-quark processes: bg scattering, $bg \rightarrow h^0 b$, $b\overline{b}$ annihilation, $b\overline{b} \rightarrow h^0 g$

dependence on squark mass scale (M_{SUSY}) :

$p_{T,jet}$ - and η_{jet} -dependence, low- m_A case

LHC, m_h -max scenario, $M_{SUSY} = 400 \text{ GeV}$, $m_A = 110 \text{ GeV}$, $\tan \beta = 30$

$p_{T,jet}$ - and η_{jet} -dependence, high- m_A case

LHC, m_h -max scenario, $M_{SUSY} = 400 \text{ GeV}$, $m_A = 400 \text{ GeV}$, $\tan \beta = 30$

[Selected Projects, Higgs + Jet]

Recent development: theoretical study of SM Higgs + high- p_T jet: [Keung, Petriello '09]

- 1. finite quark mass effects on p_T distribution
 - \rightarrow already included in our calculation [OBr, Hollik '03; '07]

- 2. electroweak loop effects on p_T distribution
 - \rightarrow calculation done, numerical study is work in progress

- \rightarrow will check result of [Keung, Petriello '09] soon
- \rightarrow will study effects on η distribution as well
- \rightarrow calculation of MSSM pendant is work in progress

- HiggsBounds

- Motivation
- Higgs search results:
 - So far: no Higgs signals.
 - LEP searched for them.
 - Tevatron is currently searching for them.
 - Tevatron and LEP turn(ed) the non-observation of Higgs signals into 95% C.L. limits on rates/cross sections of ...
 - a) ... individual signal topologies,

e.g. $e^+e^- \rightarrow h_i Z \rightarrow b\bar{b}Z$, $p\bar{p} \rightarrow h_i \rightarrow W^+W^-$,

b) ... combinations of signal topologies e.g. SM, MSSM combined limits.

Higgs search results: example 1: LEP SM combined limit

 $S_{95}(m_{H1}) := \frac{\sigma_{\max}}{\sigma_{SM}}(m_{H1})$

where $\sigma_{max}(m_{H1})$ is the maximal Higgs production cross section compatible with the background-only hypothesis at 95% C.L.

A SM-like model with $\sigma_{model}(m_{H1}) > \sigma_{max}(m_{H1})$ or $\frac{\sigma_{model}(m_{H1})}{\sigma_{max}(m_{H1})} > 1$ is said to be excluded at the 95% C.L.

[Selected Projects, HiggsBounds, Motivation]

example 2: LEP single topology limits, assuming HZ production and ...

[Selected Projects, HiggsBounds, Motivation]

example 3: LEP single topology limits, assuming ...

here: $S_{95}(m_{H1}, m_{H2}) := \frac{\sigma_{\text{max}}}{\sigma_{\text{ref}}}(m_{H1}, m_{H2})$ with a reference $\sigma_{\text{ref}}(m_{H1}, m_{H2})$

example 4: Tevatron SM combined limit [CDF note 9713, DØ note 5889]

HiggsBounds:

[Selected Projects, HiggsBounds, Motivation] [Bechtle, OBr, Heinemeyer, Weiglein, Williams '08]

Test theoretical predictions of models with arbitrary Higgs sectors against exclusion bounds obtained from Higgs searches at LEP and the Tevatron.

- Easy access to all relevant Higgs exclusion limits including information not available in the publications. (e.g. expected 95% CL cross section limits for some LEP combinations)
- Applicable to models with arbitrary Higgs sectors (narrow widths assumed) HiggsBounds Input: the predictions of the model for: # of Higgs bosons h_i, m_{h_i}, Γ_{tot}(h_i), BR(h_i → ...), production cross section ratios (wrt reference values)
- Combination of results from LEP and Tevatron possible
- Three ways to use HiggsBounds: command line, library of subroutines (Fortran 77/90), web interface www.ippp.dur.ac.uk/HiggsBounds

– Implementation

Basic idea:

• Evaluate model prediction

$$Q_{\text{model}}(X) = \frac{[\sigma \times BR]_{\text{model}}}{[\sigma \times BR]_{\text{ref}}}$$

(reference: usually SM)

of a search topology of an analysis X, for given Higgs masses + deviations from the reference.

- From the experimental analysis X, read off the corresponding observed 95% C.L. limit: $Q_{\text{observed}}(X)$.
- If $\frac{Q_{\text{model}}(X)}{Q_{\text{observed}}(X)} > 1$ the model is excluded by this analysis at 95% C.L.

 \rightarrow Problem : how to combine search results without losing the 95% C.L. ?

Answer: We can't do that.

Only a dedicated experimental analysis can do that.

However: we can always use the analysis of highest statistical sensitivity.

How to preserve the 95% C.L. limit:

- Obtain for each analysis X the experimental expected limit $Q_{\text{expected}}(X)$.
- Determine the analysis X_0 with the highest sensitivity for the signal, i.e. of all analyses X find the one X_0 where $\frac{Q_{\text{model}}(X)}{Q_{\text{expected}}(X)}$ is maximal.
- If for this analysis $\frac{Q_{\text{model}}(X_0)}{Q_{\text{observed}}(X_0)} > 1$ the model is excluded at 95% C.L.

LEP analyses

We include expected and observed S_{95} values for the following analyses 1. $e^+e^- \rightarrow (h_k)Z \rightarrow (b\bar{b})Z$, [EPJC 46(2006)547] 2. $e^+e^- \rightarrow (h_k)Z \rightarrow (\tau^+\tau^-)Z$, [EPJC 46(2006)547] 3. $e^+e^- \rightarrow (h_k)Z \rightarrow (\gamma\gamma)Z$, [LEP Higgs WG note 2002-02] 4. $e^+e^- \rightarrow (h_k)Z \rightarrow (\text{anything})Z$, [OPAL, EPJC 27(2003)311] 5. $e^+e^- \rightarrow (h_k \rightarrow h_i h_i)Z \rightarrow (b\overline{b}b\overline{b})Z$, [EPJC 46(2006)547] 6. $e^+e^- \rightarrow (h_k \rightarrow h_i h_i)Z \rightarrow (\tau^+\tau^-\tau^+\tau^-)Z$ [EPJC 46(2006)547] 7. $e^+e^- \rightarrow (h_k h_i) \rightarrow (b\overline{b}b\overline{b}),$ [EPJC 46(2006)547] 8. $e^+e^- \rightarrow (h_k h_i) \rightarrow (\tau^+\tau^-\tau^+\tau^-),$ [EPJC 46(2006)547] 9. $e^+e^- \rightarrow (h_k \rightarrow h_i h_i)h_i \rightarrow (b\overline{b}b\overline{b})b\overline{b}$, [EPJC 46(2006)547] 10. $e^+e^- \rightarrow (h_k \rightarrow h_i h_i) h_i \rightarrow (\tau^+ \tau^- \tau^+ \tau^-) \tau^+ \tau^-,$ [EPJC 46(2006)547] 11. $e^+e^- \rightarrow (h_k \rightarrow h_i h_i)Z \rightarrow (b\bar{b})(\tau^+\tau^-)Z$. [LEP Higgs WG] 12. $e^+e^- \rightarrow (h_k \rightarrow b\bar{b})(h_i \rightarrow \tau^+\tau^-)$, [LEP Higgs WG] 13. $e^+e^- \rightarrow (h_k \rightarrow \tau^+\tau^-)(h_i \rightarrow b\overline{b}),$ [LEP Higgs WG]

Inclusion of additional topologies is work in progress (e.g. $e^+e^- \rightarrow h_k Z, h_k \rightarrow \text{invisible}; e^+e^- \rightarrow h_k Z, h_k \rightarrow 2 \text{ jets}, \dots$)

Tevatron analyses

At the moment, the following analyses of Higgs production signatures by CDF and DØ have been included in HiggsBounds:

single topology analyses

search topology X (analysis)	reference (*=published)
$p \bar{p} ightarrow Z H ightarrow l^+ l^- b ar{b}$ (CDF with 1.0 fb ⁻¹)	CDF'08*
$par{p} ightarrow ZH ightarrow l^+ l^- bar{b}$ (CDF with 2.4 fb $^{-1}$)	CDF note 9475
$par{p} ightarrow ZH ightarrow l^+ l^- bar{b}$ (DØ with 2.3 fb $^{-1}$)	DØ note 5570
$par{p} o WH o l u bar{b}$ (DØ with 1.7 fb $^{-1}$)	DØ note 5472
$par{p} o WH o l u bar{b}$ (CDF with 2.7 fb $^{-1}$)	CDF note 9463
$p \bar{p} ightarrow W H ightarrow W^+ W^- W^\pm$ (DØ with 1.0 fb ⁻¹)	DØ note 5485
$p\bar{p} \rightarrow WH \rightarrow W^+W^-W^\pm$ (CDF with 1.9 fb ⁻¹)	CDF note 7307
$p\bar{p} \rightarrow H \rightarrow W^+W^- \rightarrow l^+l'^-$ (DØ with 3.0 fb ⁻¹)	DØ note 5757
$p\bar{p} \rightarrow H \rightarrow W^+W^- \rightarrow l^+l'^-$ (CDF with 3.0 fb ⁻¹)	CDF'08*
$par{p} ightarrow H ightarrow \gamma\gamma$ (DØ with 1.1 fb $^{-1}$)	DØ '08*
$par{p} ightarrow H ightarrow \gamma\gamma$ (DØ with 2.68 fb $^{-1}$)	DØ note 5737
$par{p} ightarrow H ightarrow au^+ au^-$ (DØ with 1.0 fb $^{-1}$)	DØ '08*
$p ar{p} ightarrow H ightarrow au^+ au^-$ (CDF with 1.8 fb $^{-1}$)	CDF note 9071
$par{p} ightarrow bH, H ightarrow bar{b}$ (CDF with 1.9 fb $^{-1}$)	CDF note 9284
$par{p} ightarrow bH, H ightarrow bar{b}$ (DØ with 1.0 fb $^{-1}$)	DØ '08*
$p ar{p} ightarrow b H, H ightarrow b ar{b}$ (DØ with 2.6 fb $^{-1}$)	DØ note 5726

Tevatron analyses

At the moment, the following analyses of Higgs production signatures by CDF and DØ have been included in HiggsBounds:

analyses combining topologies

search topology X (analysis)	reference (*=publ.)
$par{p} ightarrow WH/ZH ightarrow bar{b} + E_T^{ ext{miss.}}$ (CDF with 2.3 fb $^{-1}$)	CDF note 9483
$par{p} ightarrow WH/ZH ightarrow bar{b} + E_T^{ ext{miss.}}$ (DØ with 2.1 fb $^{-1}$)	D0 note 5586
$p\bar{p} \rightarrow H/HW/HZ/H$ via VBF, $H \rightarrow \tau^+ \tau^-$ (CDF with 2.0 fb ⁻¹)	CDF note 9248
Combined SM analysis (CDF & DØ with 0.9 – 1.9 fb $^{-1}$)	hep-ex/0712.2383
Combined SM analysis (CDF & DØ with 1.0 – 2.4 fb $^{-1}$)	hep-ex/0804.3423
Combined SM analysis (CDF & DØ with 3.0 fb $^{-1}$)	hep-ex/0808.0534

Inclusion of new results from Winter Conferences 2008/2009 is work in progress.

[Selected Projects, HiggsBounds, Implementation]

Input required by HiggsBounds: (example: input option effC)

number of Higgs bosons: n_{Higgs}

```
masses: m_{h_k},
```

```
total widths: \Gamma_{tot}(h_k),
```

normalised squared effective couplings:

branching ratios: $BR_{model}(h_k \rightarrow h_i h_i)$,

for $k, i \in \{1, \ldots, n_{\mathsf{Higgs}}\}$.

 \rightarrow Examples of model predictions $Q_{model}(X)$ calculated with this input:

$$Q_{\text{model}}\left[e^+e^- \to (h_1)Z \to (b\overline{b})Z\right] = \frac{\sigma_{\text{model}}(h_1Z)}{\sigma_{\text{ref}}(HZ)} \mathsf{BR}_{\text{model}}(h_1 \to b\overline{b}),$$

$$Q_{\text{model}}\left[e^+e^- \to (h_2)Z \to (h_1h_1)Z \to (b\overline{b}b\overline{b})Z\right] = \frac{\sigma_{\text{model}}(h_2Z)}{\sigma_{\text{ref}}(HZ)} \mathsf{BR}_{\text{model}}(h_2 \to h_1h_1)\mathsf{BR}_{\text{model}}(h_1 \to b\overline{b})^2$$

with

$$\frac{\sigma_{\text{model}}(e^+e^- \to h_k Z)}{\sigma_{\text{ref}}(e^+e^- \to HZ)} = \left(\frac{g_{h_k ZZ}^{\text{model}}}{g_{HZZ}^{\text{SM}}}\right)^2, \quad \frac{\sigma_{\text{model}}(e^+e^- \to h_k h_i)}{\sigma_{\text{ref}}(e^+e^- \to H'H)} = \left(\frac{g_{h_k h_i Z}^{\text{model}}}{g_{H'HZ}^{\text{ref}}}\right)^2,$$

$$\mathsf{BR}_{\mathsf{model}}(h_k \to b\overline{b}) = \mathsf{BR}_{\mathsf{SM}}(H \to b\overline{b})(m_H) \frac{\mathsf{\Gamma}_{\mathsf{tot}}^{\mathsf{SM}}(m_H)}{\mathsf{\Gamma}_{\mathsf{tot}}(h_k)} \Big|_{m_H = m_{h_k}} \left(\frac{g_{h_k bb, \mathsf{eff}}^{\mathsf{model}}}{g_{Hbb}^{\mathsf{SM}}}\right)^2$$

applications

application 1: re-evaluation of SM exclusion with improved prediction

recent developments:

- Improved SM prediction for $\sigma(p\bar{p} \rightarrow gg \rightarrow H)$: mixed QCD-Electroweak corrections [Anastasiou, Boughezal, Petriello '08]
 - → "Our results motivate a reconsideration of the Tevatron exclusion limits."
- Updated determination of PDFs: MSTW 2008 [Martin at al. '08]

[Selected Projects, HiggsBounds, Implementation]

application 1: re-evaluation of SM exclusion with improved prediction

note! "current" = before March 2009

[Selected Projects, HiggsBounds, Implementation]

application 1: re-evaluation of SM exclusion with improved prediction

```
note! "current" = before March 2009
```


application 2: SM versus Fourth Generation Model exclusion

[Selected Projects, HiggsBounds, Implementation]

application 3: MSSM benchmark scenarios, exclusion update

b) HiggsBounds

impoved m_h prediction, Tevatron data included

[Selected Projects, HiggsBounds, Implementation] application 3: MSSM benchmark scenarios, exclusion update

a) LEP and Tevatron exclusion b) highest sensitivity

[Selected Projects, HiggsBounds, Implementation]

HiggsBounds : status and outlook

• The code is publicly available (current verison: 1.1.0).

Please visit the web page www.ippp.dur.ac.uk/HiggsBounds/ for downloading the package or using the web interface.

• reception so far very encouraging:

e.g. the authors of the following programs are using it: **FeynHiggs**, **Fittino**, **MasterCode**, **2HDMC**, **DarkSusy**, and the following research groups:

S. Kraml et al., M. Carena et al.

- Current work:
 - inclusion of new Tevatron results (from winter conferences)
 - inclusion of LEP analyses with $H \rightarrow$ invis., $H \rightarrow$ 2 jets
 - providing CL_{s+b} for given m_H and $\sigma \times BR$ (\rightarrow useful for model fitting)
- Plans:
 - inclusion of charged Higgs analyses
 - inclusion of width-dependent limits

summary

- We are sure to observe electroweak symmetry breaking in nature. However, up to now, we have no clue how it is realised. The Higgs mechanism allows to describe EWSB consistently up to very high energy.
- Search for Higgs boson(s): 1. establish a signal /
 2. make sure it's a Higgs / 3. determine the underlying model.
- SM simulations show: Higgs + high- p_T jet is a promising alternative to the inclusive production. Differences between MSSM and SM also extend to shapes of differential distributions.
- HiggsBounds: powerful tool for constraining Higgs sectors of new physics models systematically.

• Backup
- MSSM

Supersymmetry ...

- ... is *the* extension of the Poincaré-symmetry of space-time
- ... leads to a symmetry between Fermions & Bosons
- gauge theory with minimal SUSY :
 - same # of fermionic & bosonic d. o. f.
 - \rightarrow a superpartner of different spin exists for each particle
 - couplings are correlated
 - \rightarrow e.g. scalar 4-point int. \leftrightarrow gauge couplings
 - superpartners have the same mass
 - \rightarrow SUSY must be broken at the electroweak scale
- gauge theory with broken SUSY :
 - superpartner masses enter as additional free parameters (essentially)

Minimal supersymmetric Standard Model (MSSM):

gauge group : $SU(3)_{colour} \times SU(2)_{isospin} \times U(1)_{hypercharge}$

particle content :

regular particles		spin	superpartners		spin
fermions <	$egin{array}{l} { extsf{quarks}} & u,d,s,c,b,t \ { extsf{leptons}} & e, u_e,\mu, u_\mu, au, u_ $	<u>1</u> 2	sfermions <	$egin{array}{l} ext{squarks} \ ilde{u}, ilde{d}, ilde{s}, ilde{c}, ilde{b}, ilde{t} \ ilde{sleptons} \ ilde{e}, ilde{ u}_e, ilde{\mu}, ilde{ u}_\mu, ilde{ au}, ilde{ u}_ au \end{array}$	0
gauge bosons G, W^{\pm}, Z, γ		1	gauginos	$ ilde{G}, ilde{W}^{\pm}, ilde{Z}, ilde{\gamma}$	$\frac{1}{2}$
Higgs bosons H_1, H_2		0	Higgsinos	$ ilde{H}_1, ilde{H}_2$	$\frac{1}{2}$

 $\tilde{W}^{\pm}, \tilde{Z}, \tilde{\gamma}$ and \tilde{H}_1, \tilde{H}_2 mix to charginos $\chi_1^{\pm}, \chi_2^{\pm}$ and neutralinos $\chi_1^0, \ldots, \chi_4^0$

R-parity : discrete, multiplicative quantum number

R(regular particles) = +1R(superpartners) = -1

→ designed to avoid large Flavour Canging Neutral Currents (FCNC)

consequences of *R*-parity conservation:

- all interactions involve an *even* number of superpartners
 → superpartners can only be pair-produced
- the lightest superpartner (LSP) is stable \rightarrow the LSP is a candidate for dark matter

- SM extensions

