Constraining Higgs Sectors with LHC Searches using HiggsBounds 3.5.0

Oliver Brein

Physikalisches Institut, Universität Freiburg

e-mail: Oliver.Brein@physik.uni-freiburg.de

outline :

- HiggsBounds
 - overview of version 3.5.0 [beta]
 - some implementation details
 - status and outlook of the project
- Constraining Models
 - SM versus 4th generation model
 - SM+invisible model
 - Randall-Sundrum scalar sector
 - MSSM

• HiggsBounds

[HiggsBounds]

- overview of version 3.5.0 [beta]

- overview of version 3.5.0 [beta]

HiggsBounds : [Bechtle, OBr, Heinemeyer, Stefaniak, Weiglein, Williams '08-'11] tests models with arbitrary Higgs sectors against exclusion bounds from direct searches.

- easy access to all relevant Higgs exclusion limits including information not available in the publications. (e.g. expected 95% CL cross section limits)
- applicable to models with arbitrary Higgs sectors (narrow widths assumed) HiggsBounds Input: the predictions of the model for: # of neutral & charged Higgs bosons h_i , m_{h_i} , $\Gamma_{tot}(h_i)$, BR($h_i \rightarrow ...$), production cross section ratios (wrt reference values)
- combination of results from LEP, Tevatron and LHC possible
- three ways to use HiggsBounds:
 □ command line, □ subroutines (Fortran [77]/90), □ web interface:
 projects.hepforge.org/higgsbounds

[HiggsBounds]

- some implementation details

Higgs search results: example 1: LEP SM combined limit

exclusion = rejection of the Higgs hypothesis

 $S_{95}(m_{H1}) := \frac{\sigma_{\min}}{\sigma_{SM}}(m_{H1})$

where $\sigma_{\min}(m_{H1})$ is the Higgs signal cross section where data and Higgs hypothesis are compatible with only 5% probability.

A SM-like model with $\sigma_{model}(m_{H1}) > \sigma_{min}(m_{H1})$ or $\frac{\sigma_{model}(m_{H1})}{\sigma_{min}(m_{H1})} > 1$ is said to be excluded at the 95% C.L. example 2: LEP single topology limits, assuming HZ production and ...

example 3: Tevatron SM combined limit [CDF & DØ '10]

Considering many analyses for many Higgs bosons:

first a definition : **analysis application** *X*:

application of a certain analysis A_i to a certain Higgs boson h_k (or a set)

that means: X corresponds to:

- * a signal topology (or a set),
- * the corresponding cross section prediction $\bar{\sigma}_{model}(X)$,
- * observed cross section limit $\overline{\sigma}_{\text{observed}}(X)$ of analysis A,
- * expected cross section limit $\bar{\sigma}_{\text{expected}}(X)$ of analysis A.

Basic idea:

for an analysis application X:

• evaluate model prediction

$$\bar{\sigma}_{\text{model}}(X) = \frac{[\sigma \times BR]_{\text{model}}}{[\sigma \times BR]_{\text{ref}}}$$
 (reference: usually SM)

of the correponding search topology for given Higgs masses + deviations from the reference.

- read off the corresponding observed 95% C.L. limit: $\overline{\sigma}_{\text{observed}}(X)$.
- If $\overline{\sigma}_{model}(X) > \overline{\sigma}_{observed}(X)$ the model is excluded by this analysis application at 95% C.L.
- \rightarrow Problem : how to combine analysis applications without losing the 95% C.L. ?

Answer: We can't do that.

Only a dedicated experimental analysis can do that.

However: we can always use the analysis application of highest statistical sensitivity.

How to preserve the 95% C.L. limit:

- Obtain for each X the experimental expected limit $\bar{\sigma}_{\text{expected}}(X)$.
- Determine the analysis application X_0 with the highest sensitivity for the signal, i.e. of all X, find X_0 where $\frac{\overline{\sigma}_{model}(X)}{\overline{\sigma}_{expected}(X)}$ is maximal.
- If for this analysis application $\overline{\sigma}_{model}(X_0) > \overline{\sigma}_{observed}(X_0)$, the model is excluded at 95% C.L. by X_0 .

[HiggsBounds]

- status and outlook of the project

HiggsBounds: status and outlook

- The code is publicly available since Feb. 2009 (current version: 3.5.0 beta) \rightarrow projects.hepforge.org/higgsbounds
 - Tevatron & LHC results up to Lepton-Photon 2011 included
 - extended functionality (H^{\pm} searches, onlyP analyses selection, ...)
 - HiggsBounds 3.5.0 beta available to download
 - \rightarrow includes: SLHA input option, χ^2 fitting for LEP channels, optional addition: SusyBounds (Chargino, Neutralino bounds)
- Reception very good (> 100 users). Code used in/by: FeynHiggs, CPsuperH, Fittino, MasterCode, 2HDMC, DarkSusy, SuperIso, etc.
- Current work/plans:
 - new LHC results after Lepton-Photon 2011
 - searches for fermiophobic models
 - doubly charged Higgs searches, LEP searches for $m_{H} < 10 \ {\rm GeV}$
 - inclusion of width-dependent limits

• Constraining Models

- SM versus 4th generation model

[Constraining Models, SM vs. 4th generation model]

- SM versus 4th generation model [using $\Gamma(H \rightarrow gg)_{model} = 9 \times \Gamma(H \rightarrow gg)_{SM}$]

- SM versus 4th generation model only hadron collider searches

for comparion: status in August 2009 (without LHC results)

- SM+invisible model

- SM+invisible model: SM + one extra decay mode $H \rightarrow$ invisible

- SM+invisible model: SM + one extra decay mode $H \rightarrow$ invisible

- SM+invisible model: SM + one extra decay mode $H \rightarrow$ invisible

Randall-Sundrum scalar sector

Randall-Sundrum scalar sectorRandall Sundrum model basics:

[Randall, Sundrum '99]

• space has D = 3 + 1 dimensions, metric:

$$ds^{2} = e^{-2kr_{c}\phi}\eta_{\mu\nu}dx^{\mu}dx^{\nu} - r_{c}^{2}d\phi^{2}, \ \phi \in [0,\pi].$$

Spacetime is a slice of 5d anti-de-Sitter space: two boundaries: $\phi = \pi$: IR brane (our 3-space) $\phi = 0$: UV brane

- k, r_c^{-1} are $\mathcal{O}(M_{\text{Pl}})$ with $kr_c \approx 12$. This "little hierarchy" can be generated & stabilized [Goldberger, Wise '00] \Rightarrow fluctuations of r_c : scalar d.o.f φ , gets a VEV Λ_{ϕ}
- resolution of the hierarchy problem: Why is the EW scale $<< M_{\rm Pl}$?: mass parameters in the fundamental 5d model m_0 appear in our visible space as: $-kr_e\pi$ 10-16

$$m = m_0 e^{-kr_c\pi} \approx m_0 10^{-16}$$
.

• propagating in extra dimension:

originally: only gravity,

nowadays: gauge bosons, fermions [EW & flavour observables!] But: Higgs needs to be localized on/near IR brane [hierarchy problem!]

Randall Sundrum scalar sector:

- There is one graviscalar in 5d: the radion φ (typically the lightest new particle to appear)
- Higgs radion mixing via the interaction

 $\mathcal{L} = -\xi \sqrt{-g_{\text{ind}}} R(g_{\text{ind}}) \Phi^{\dagger} \Phi$

with $g_{ind}(\varphi(x),...)$: induced 4d metric on IR brane, R: Ricci scalar.

- \rightarrow Radion φ and physical Higgs h mix to form two mass eigenstates
- arphi coupling to massive fermions and gauge bosons \propto mass, but
 - $\star \varphi b \overline{b}$ coupling suppressed wrt SM Higgs
 - $\star \varphi gg$ coupling enhanced wrt SM Higgs
 - $\star \; \varphi \, \gamma \gamma$ coupling suppressed wrt SM Higgs
- \rightarrow two scalars in the spectrum with modified couplings compared to the SM Higgs boson

[Constraining Models, RS scalar sector] Exclusion range and sensitivity map: $\xi - m_{\varphi}$ plane w/o LHC data (12/2010)

[Constraining Models, RS scalar sector] Exclusion range and sensitivity map: $\xi - m_{\varphi}$ plane with LHC data parameter: $\Lambda_{\varphi} = 1$ TeV, $m_h = 120$ GeV

a) highest sensitivity

[Constraining Models]

- MSSM

Exclusion range and sensitivity map: $\tan \beta - m_A$ plane : m_h^{max} + scenario

Exclusion range and sensitivity map: $\tan \beta - m_A$ plane : m_h^{max} + scenario

c) highest sensitivity analysis

 $\tan\beta$ [1]

×
$$ee \rightarrow hZ \rightarrow (b\bar{b})Z$$

× $ee \rightarrow Ah \rightarrow bbbb$
= $p\bar{p} \rightarrow Vh, h \rightarrow b\bar{b}$ (SM), CDF
= $p\bar{p} \rightarrow Vh/h$ via VBF, $h \rightarrow b\bar{b}$ (SM), CDF&D0
= $p\bar{p} \rightarrow h/H/A \rightarrow \tau\tau$, ATLAS
= $p\bar{p} \rightarrow h \rightarrow WW$, ATLAS
= $p\bar{p} \rightarrow H \rightarrow WW$, ATLAS

[Constraining Models, MSSM] Exclusion range and sensitivity map: $\tan \beta - m_A$ plane : m_h^{max} +(400) scenario $[M_{SUSY} = 400 \text{ GeV}]$ a) exclusion b) highest sensitivity experiment : LEP I:LHC $\tan\beta$ [1] : Tevatron $\tan\beta$ [1]

 $m_A \; [\text{GeV}]$

 $m_A \; [\text{GeV}]$

Exclusion range and sensitivity map: $\tan \beta - m_A$ plane : $m_h^{\max} + (400)$ scenario $[M_{SUSY} = 400 \text{ GeV}]$

c) highest sensitivity analysis

 $\tan\beta$ [1]

$$\begin{array}{l} \times \ ee \rightarrow hZ \rightarrow (b\overline{b})Z \\ \times \ ee \rightarrow Ah \rightarrow bbbb \\ \hline p\overline{p} \rightarrow Vh, h \rightarrow b\overline{b} \ ({\rm SM}), \ {\rm CDF} \\ \hline p\overline{p} \rightarrow Vh/h \ {\rm via} \ {\rm VBF}, h \rightarrow b\overline{b} \ ({\rm SM}), \ {\rm CDF\&D0} \\ \hline p\overline{p} \rightarrow h/H/A \rightarrow \tau\tau, \ {\rm ATLAS} \end{array}$$

Exclusion range and sensitivity map: $\tan \beta - m_A$ plane : nomix+ scenario

Exclusion range and sensitivity map: $\tan \beta - m_A$ plane : nomix+ scenario

c) highest sensitivity analysis

 $tan \beta$ [1]

×
$$ee \rightarrow hZ \rightarrow (b\overline{b})Z$$

× $ee \rightarrow Ah \rightarrow bbbb$

 $p\overline{p} \rightarrow Vh/h$ via VBF, $h \rightarrow b\overline{b}$ (SM), CDF&D0
 $p\overline{p} \rightarrow h/H/A \rightarrow \tau\tau$, ATLAS

Exclusion range and sensitivity map: $\tan\beta - m_A$ plane : gluophobic scenario

Exclusion range and sensitivity map: $\tan \beta - m_A$ plane : gluophobic scenario

c) highest sensitivity analysis

Exclusion range and sensitivity map: $\tan\beta - m_A$ plane : small α_{eff} scenario

Exclusion range and sensitivity map: $\tan\beta - m_A$ plane : small α_{eff} scenario

c) highest sensitivity analysis

 $\tan\beta$ [1]

summary

- HiggsBounds: powerful tool for constraining Higgs sectors of new physics models systematically.
- Tevatron has only few places left where it keeps the highest sensitvity in Higgs search. LHC takes over!
- ... that's also true for the MSSM benchmark scenarios
- Current LHC (& Tevatron) results rule out additional parts of the Randall-Sundrum model's parameter space (compared to LEP results).